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1. Introduction

in the Al literature, the topics of qualitative reasoning and causality have been closely
interwoven, and have sometimes been treated as though there was an essential connection
between them. In fact, however, the two topics are quite separable. Qualitative reasoning is
mainly used to soive problems in comparative statics: if there is a change in the value of an
exogenous (independent) variable of a system of variables, what changes will take place in the
endogenous (dependent) variables when the system reaches its new equilibrium? Causal
reasoning, on the other hand, is mainly used to explain how a system works: the mechanisms of
causal connection among its parts and the way in which these causal connections propagate
effects through the system.

Of course the two methods of analysis can be combined. The causal orderirig of the
variables of a system, together with the algebraic signs associated with the causal links provide
sufficient information to carry out some (but not all) qualitative analyses. However, given any set
of equations, causal or not, that describe a system, and given the signs of the coefficients in
these equations, qualitative analysis can be carried out without concern for the causal ordering of
the variables..

In previous papers, two of us have explicated the formal foundations of causal ordering for
dynamic systems, static systems, and systems containing a mixture of dynamic and static
mechanisms. We have also treated the problem of aggregation and disaggregation of causal
syétems. and have shown both how to carry out these processes and what their consequences
are for the descriptions of the systems [4, 3, 5].

in this paper, we propose to provide comparable foundations for qualitative analysis, and in
particuiar, to show how qualitative reasoning arises naturally and simply out of the structure of
systems of algebraic equations and ordinary differential equations. Our goal is to sum up and
explicate the practices of researchers in many fields who use qualitative reasoning, and thereby
to gain an understanding of the formal assumptions and mechanisms that underiie this kind of
analysis. There is no new mathematics in what we have to say. Our reason for saying it is that
there does not appear to exist any readily available general and sygtematic account in the Al
literature of the simpie mathematics that is implicit in what people are doing when they carry out

qualitative analyses of systems of interconnected variables.! The extensive discussions of

'Perhaps the best treatments of the subject — all now very oid -- are to be found in Lotka (6], Evans [2], and Samueison
(8], the first of which applies the analysis mainly 10 biology, the iast two 1o economics.
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qualitative reasoning to be found in the Al literature are not rooted in the tamiliar formalisms of the
aigebra and caiculus of real numbers but postulate new, independent formalisms.

Since it has not proved easy to make these new formalisms consistent and rigorous, it
would be very convenient if we could simply take advantage, for this purpose, of familiar
mathematical systems that are already in place. We will show that this can indeed be done, and

that standard formalisms can be used to explicate the practices of qualitative reasoning.

2. Qualitative Reasoning Based on Ordinal Relations

Qualitative reasoning treats quantities that are scaled only ordinally, hence are defined only
up to arbitrary strictly monotonic transformations. Greater and less, warmer and cooler, talier and
shorter are ordinal terms that can be used to describe the qualitative relations between pairs of
values of the corresponding ordinal variables (amount, temperature, height). On the other hahd.
terms like “twice,” “half," "four more than" imply cardinality and cannot be applied to ordinal
variables. If ardor is an ordinal variable, then one lover cannot be twice as ardent or half as
ardent as another -- only more or less ardent.

Of course, the fact that cardinal properties cannot be attributed to ordinal variables does
not prevent us from attributing ordinal properties to cardinal variables. Even in the presence of a
Ceisius thermometer, one gay can simply be warmer than another, or cooler. in particular, it may
often be convenient to adopt a particular cardinal scale to represent an ordinal variable, restricting
ourselves to just the ordinal properties of the scale and renouncing any interpretation of its
cardinal properties. Thus, in the (ordinal) Mohs scale of hardness, cardinal numbers are
assigned: for example, 2 for gypsum, 4 for fluorite. One can say that fluorite is harder than
gypsum, but not that it is twice as hard. Still, it may be convenient to empioy the numerical scale,
provided that we remember to attach meaning only to the ordinal, and not to the cardinal
properties of the scale.

Ordinal relations are invariant under arbitrary strictly positive monotonic transformations of
tha scale of measurement, while cardinal relations are invariant only under affine transformations.
Although ordinal relations are weaker than cardinal relations (the former are implied by, but do
not imply, the latter), they have the advantage that they can often be established empirically when
we do not have enough information to establish values on a cardinal scaie. Thus, when | step out

of doors, | may know that it is warmer than it was yesterday without knowing the exact Fanrenheit
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or Celsius temperature on either day.

it we ar3 considering an equation connecting two variables, y=/(x), we may know that as x
increases y will increase (dy/dx > 0) without knowing the exact functional form of the relation, much
less the values of numerical parameters. Or, even if we can know the form of the function and
the parameter values for one particular situation, we may be interested in reasoning about the
equation generally, over a whole range of situations of which this one is only a special case, but
in all of which y remains some strictly monotonically increasing function of x. In both of these
cases, we will want to use the methods of qualitative (ordinal) reasoning. Let us now state these
matters a little more formally.

First, a few words about notations: we will sometimes use /, to denote the derivative of /
with respect to x. If fis a function of x alone, f, is the total derivative of f with respect to /. When f
is a function of several variables including x, f, is a partial derivative. Whenever this notation is

used, the context should make it clear which is the case.

2.1. Invariance under Monotonic Transformation

it a variable is meant only to define the ordering of some items along a scale, we style the
variable ordinal. This variable can be repiaced by any other that does not disturd the ordering by
transposing items. Thus, if x(x>0) is a real variable, but we are interested only in its ordinal
properties, we may replace it by x> or e* or logx, without changing these properties, for if x; >x;
then 22, >x%;, %> e% and logx; > logx;

More precisely, the ordering of a set of elements by a variable associated with that ordering
is invariant under any positive strictly monotonic transformation of the variable. Consider xc X
and yeY. Then fixy XY, is a positive strict monotonic transformation if y=fix) > = f(xj)
whenever x; >x; and vice versa. If a set of objects has been ordered by the assignment of values
of x then replacement of all these values by the corresponding values of y will not change the
ordering.2

For simplicity, we will confine ourseives to variables that are defined over the reals. Let x
and y be a pair of such variables, and let us suppose that they are positively monotonically
related. Thatis, there is a function f{s), f-R 2R, such that x; > x;ifty; = flx) > y;=fix). Now we

%n what follows, we will omit the adiective “strict” from our characterization of monotonic transformations, but for
simplicity, we will limit ourselves to the relation, >, of strict inequality instead of using the weaker relation, », "greater than
or equal 10.*
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subject ooth x and y to positive monotonic transformations, g(s) and A(e) respectively, so that
r=g(x) and weh(y). Since g and h are monotonic we have z; > z;iff x; > x, and w; > w; iff y, > y,.

But since x and y are positively monotonically related x; > x; it w, > w,. This is readily

generalized to:
Theorem 1: If two variables x and y, are positively (negatively) monotonically
related, and if x is transformed t0 z and y t0 w as z = g(x) and w = A(y), where g and h
are arbitrary positive monotonic transformations, then w and z are positively (negatively)
monotonically related.
Proof: Since g is a monotonic transformation

xi > x]<-=>z‘. > zl-.

Similariy,
> y<m=d>w; > W,

since A is monotonic transformation. Given,

X; > xi<mm3y, >y,

it follows that
2 > 7, <==>X; > Xjs =3y, > Yp oW > Wje oo ®

For example, suppose we have observed empirically, using ordinal measures, that
pressure grows with temperature. Then if we replace our pressure scale with a new ordinally
equivalent scale (e.g., P+, where P» is the square of pressure), and our temperature scale with an
ordinally equivalent scale (e.g., T+, where T+ is the logarithm of temperature), it follows that Pe
grows with Ts.

Moreover, monotonic relations between ordinai variables are transitive in the following

sense.

Theorem 2: If x varies positively with y and y varies positively (negatively) with z,
then x will vary positively (negatively) with z. The latter relation will be invariant under
arvitrary positive (negative) monotonic transformations of x and z.

Proot: Given y=fx)./, > 0, and z = (). 8, > 0,

Therefore monotonicity is transitive. Note this holds for 2, ;‘£<0

Let veh(x), w=i(z) such that v, w_ >0.
dw _dwdz dwdzdydx
s dzdv dzdydxdv

Note that E>Osmcez>0. This is also true for v, w, <0.-- - o

> 0,
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3. Continuous, Ditferentiable Functions

it functions of ordinal variables can be represented by functions of cardinals that are
continuous and possess appropriate derivatives, then for monotonic transformations that are aiso
continuous and possess appropriate derivatives, we can apply the usual operations of the
differential calculus to them. Consider ordinal variables x, y, and z, and suppose we find that z
varies positively monotonically with x when y is constant, and z varies negatively monotonically
with y when x is constant. Than if z=f(x, y) is everywhere differentiable we have dz/0x > 0 and
dz/dy < 0, where dz/dx and dz/dy are the partial derivatives of z with respect to x and y,
respectively.

in general, it would be convenient if we could always simplify a function z = f{x,y) by taking
monotonic transformations of our variables in such a way as to transform the function to
*=x"xy’ or 2*=x" + y°, where z°, x°, and y* are the transformed variables. Is this possibie in
general? itis not. The proof is not difficult, but we will omit it here.

But the unavailability of such a transformation is not important, since if we restrict ourseives
to qualitative reasoning and ordinal properties, we need not specify any but the ordinal properties
of the functions we deal with; the exact form of the function does not matter. If, in the last
example, x undergoes a positive monotonic transformation t0 w, $0 that now z = g(w,y), then if
f,>0,8,>0.

3.1. An Example
Consider two equations connecting a pair of variables, x and y, with an exogenous
parameter, T, in the first equation:

y=AxT)

x = g(y)
Suppose the system described by these equations is in equilibrium for a particular value of T, and
that 7 is now displaced by an amount, d7. We now solve for the displacements of x and y that
restore the system to equilibrium, dx and dy respectively:

dy=f dx+ fidT

dx =g dy
where the subscripts denote partial derivatives. Then we find that:

frdT
dys= .—1—
(1-f,8)
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dr= 8,_fr£ (N
(7,3
Without loss of generality, we can take f; > 0, for we can aiways replace T by -T.
1A: Now if /, and g, are both positive and f,g, < 1, then dy/dT > 0 and avdT > 0.
i1B: Itf, and g, are both positive, but /8, > 1. then dy/dT < 0 and dv/dT < 0.
HA: Now if £, and 8, are both negative and f:8, < 1, then dy/dT > 0 and dx/dT < 0.
iB: If f; and g, are both negative, butf,g, > 1, then dy/dT < 0 and dv/dT > 0.
n: itf, > 0and 8 < 0, then dy/dT > 0 and dv/dT < 0.
wv: |fj;<0andgy>0,thendy/¢ﬂ'>Oanddx/dr>0.

Table 3-1 summarizes these resuits. Since the result in cases |A and |1B depends on the
cardinal magnitude of f‘g’, we might suppose that it is not invariant under monotonic
transformations of the variables. But this is not the case. Suppose we transform x monotonically
tow =p(x), and y t0 z = g(y). Then

z, = .qlé, and w, =i‘i’.,
[A q,
so that
e DiPely

wWe == "8y
x Ty
The product of the partial derivatives of the two dependent variables is invariant under monotonic

transformations of those variables, hence the sign of (1-f, gy) is an ordinal property of the system.
Notice that the conclusions we reach by solving the simultaneous equations are not always
the same as those we would reach simply by propagating dT through the equations, step by step.

For consider the cases examined above:

¢ |A; The increase in T causes an increase in y, which in turn causes an increase in x.
it we trace the repercussions further, we see that the increase in x will cause a
further increase in y, so that there will surely be a net increase in x and y, in
agreement with the algebraic analysis in Case IA. Our curiosity may be aroused as
to whether the process will converge to an equilibrium or diverge, a question that did
not arise explicitly in our algebraic treatment. We will return to this question later. 1B
is similar.

¢ IA: The increase in T causes an increase in y, which causes a decrease in x. The
decrease in x will cause a further increase in y, and so on. There will surely be a net
increase in y and a net decrease in x, as in algebraic Case lIA. But again, we do not
know whether the process converges. IIB is similar.

o |ll. The increase in T causes an increase in y, which causes a decrease in x. This
time a decrease in x will cause a decrease in y, and this will cause an increase in x.
In this case, propagating the change around the feedback loop makes the net effect
indeterminate, and again we do not know if the process converges.

¢ IV. The increase in T causes an increase in y, which causes an increase in x. Now
the increase in x causes a decrease in y, and a consequent decrease in x. As in
Case lll, the final results are indeterminate.
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Can we say anything more about convergence? When we propagate the inital impuise
wound the i00p, we have Ax = g,4y, and Ay,, = f,Ax, 80 hat Ay, = 2/, 8y, oOf
8. = @f) Ay, Hence, the sum 3.y, wil converge if Ig/,| < 1, and will diverge otherwise.
By introducing an expiicit dynamic process of equilibration Into our assumptions, we have arrived
at conditions for convergence of the process, or what is equivalent, conditions for stability of
equilibrium.

Examining Table 1, we see that in the cases of convergence (the right-hand half of the
1able), the net effects of the change in T are the same in sign as the gross eftects of the initial
propagation 10 y, and from y to x. The net change in y will aiways have the same sign as the
change in T, while the change in x will have the same or opposite sign a&s g, is positive or
negative, respectively. The sign of the feedback link, /, is ireievant - at most it magnifies or
dampe the effect of the initial impuise as /.g, is positive or negative, respectively.

Net Effects of Change in dT

B A
gy >1 I Gy <t
fy Oy dx dy dx dy

I {+]+ |- - + +
-1 1+ . . +
Mmli+f- |- + . +
Vi- |+ |+ + + +

Tabie 3-1: Propagation Effects

3.2. Dynamics and Stability
From the resuits of the last section, we ieam that even in very simple systems with
feedback 'cops, the conclusions we can draw about shifts in equilibrium may depend critically
upon assumptions of system stability. But the conditions for stability are not uniqueiy determined
by the equilbrium equations alone. They depend aiso on the process of adjustment when
equilibrium is disturbed.
Consider again the system:
y=faI)
x=g(y)
Tha informal argument made earlier, that /.8, < 1 was a necessary and sutficient condition for

g
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stability, was derived implicitly by embedding our equilibrium equations in the following dynamic
structure: ’

Y= 1)

5, =80,-1)
for which the previous pair of equations is the (stable or unstable) equilibrium. Since we hold T
constant after the initial impuise, dT, we may simply disregard this variable and consider the
behavior of the system moving from a non-equilibrium initial position, x, and y,, with T fixed. We

obtain the second-order difference equation:
Y2 =f300))
For small disturbances from equilibrium, we can replace this by the linear system:
Y2 =AY,
where A=/ g, Let
¥, = (AR)'yg
so that
(ARY'*2 = A(ARY,
A =1
- k= 1/(A)\R2
=y, =A%y,
This expression for y, implies that y will converge iff A < 1, which was also our conclusion in
Section 3.1. In general, assuming different processes of adjustment may lead to different stability

conditions, and as a consequence, to different net effects of a shift in parameters.

3.3. Propagation and Stabllity
The description of value propagation in Section 3.1 is very similar to the procedure for
solving confluence equations to derive the Cynamic behavior of a system empioyed by de Kieer

and Brown in ENVISION [1]. Consider again the system in the example.
y=fx,T
x=g0)
if we assume that these equations represent components or conduits that transmit signals
ingtantaneously (in other words, that the equilibrium relations represented by these equations are
restored instantly after a disturbance,) we can derive a description of the dynamic behavior of the
system by differentiating the equations as follows;

eAVA-SY @)
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dx dy :
z " %a 3)

As in the example in Section 3.1, we assume %’ >0andfy > 0.

Case I: Assume f,.g, > 0. Equations (2) and (3) become the following confiuence

equations;
(4)
dy = dx +9T

(5)
dx=dy,
where de denotes the sign of ;. Given the input disturbance,
oT=+, (6)
the values of dy and dx can be determined by propagating the disturbance through the confluence
equations. In this case, we have a choice of propagating it through confluence (4) to dx or to dy.
Case IA: Assuming that dx is initially negligible, we propagate the input to dy through (4) to

obtain
dy =+, ]
Propagating this to dax through (5). we have
ox=+. ®

Propagating (8) back to (7) does not produce a contradiction. Therefore, (7) and (8) are a
solution. Furthermore, if we now assume that dT is negligibie and propagate (8) to dy through (7),
the value obtained for dy would be the same, +. Therefore, the feedback must be positive.

Case IB: Likewise, if we assumae that dy is initially negligible, we obtain
oxz=-anddy=-.

Other cases lead to the same soiutions, as shown in Table 3-1. Notice that in solving the
problem by sign propagation, as is done in ENVISION, it is the assumptions about the orders of
propagation that lead to different solutions in Case IA and IB above. On the other hand, in
Section 3.1, assumptions about the value of /2 lead to the two different solutions. Let's explore

these assumptions in terms of stability. Equations (2) and (3) can be rewritten as follows:

(-f,8)F =115 (9)
A-f8)5=8 113 (10)
f,gy <1 dylds, dx/dt > 0, since (l—fxgy) >0,fr>0, and dT/dt >0. In terms of

propagation this means that {dy/dt| > |f (dx/dr)|, hence the effect of dT/d: on
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dy/d1 dominates the effect on dx/dt. This is equivalent to propagating a7 to dy
first, i.6. Case |A above.

f,g, >1 dy/di, dx/dt < 0. In terms of propagation this means that |dy/dt| < |f,(dv/dn)|,
hence the effect of dT/d: on dx/d: dominates the effect on dy/dr. This is
equivalent to propagating o7 to dx first, i.e. Case IB above.

As shown in the previous section, A is the stable system, and B is the unstable system,
though the question of stability cannot be answered by solving confluence equations. Notice that
although the stability assumption is weaker than the assertion that dx or dy is negligible,

nevertheless it is strong enough to determine which term in Equation (2) dominates.

4. Non-linear Dynamic Systems with Ordinal Variables
Thus far we have been concermned with static functional relations among variables. Now we

turn to time-dependent relations expressible as differential equations. The discussion will be

limited to the simplest case of first-order non-linear differential equations in three variables,

including time. Any such system can be written as:

&

== x.y) (1

dy

< =8(xy) (12)
Taking the ratio of Equations (12) to (11), we also have:

& _ o) 1

& fxy) (13)

Here we are on more familiar ground, for textbooks on differential equations do often
present the kind of qualitative treatment of non-linear systems that we are about to describe here.
Hence, we can be brief. In the x-y plane, we can draw the direction field that describes the paths
of the system from any initial conditions. At any point in such a path, the siope of the path will be

given by equation (13). Figure 4-1 depicts the direction field for (13) in the case where

fixy) = -x+ b log(y) and
8(xy) = -y + alog(), (14)

if we set g- 0, then we obtain the curve, f(x.y)=0, along which the intersecting paths of the
direction field are vertical. Similarly, if we set g. = 0, we obtain the curve, g(x.y)=0, along which the
intersecting paths of the direction field are horizontal. The points where ; - % =0 are the (stable

and unstable) equilibrium points of the system. In Figure 4-1, at A, where the paths for increasing
t converge on an equilibrium point, the equilibrium is stable; at B, where they diverge from one, it

is unstable. At saddle points, some paths may converge while others diverge, making the

10
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x = b log(y)

y = a log(x)

Figure 4-1: Direction Field for Equations (14)

) 4
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equilibrium unstable.

Sacks developed a program calied PLR (Piecewise Linear Reasoner) which examines the
properties of the direction field of a system of non-linear differential equations to determine its
qualitaﬁv_e behavior [7]. In particular, he divides the space into regions in each of which the
system can be approximated by a linear system. In each such region, he examines the direction
field to determine the path of the system within and out of the region. The giobal behavior of the
system can be characterized qualitatively in terms of the system’s path through these regions.

Waeid has proposed a technique, which he calls Comparative Analysis, and which can draw
some conclusions about the displacement of the paths and of equilibria with changes in system
parameters [9]. In Section 6 we will show how these sorts of conclusions can be drawn directly
by our methods of ordinal reasoning.

In non-linear systems of differential equations, the paths of the direction field may also form
closed curves in the x-y plane, so that the system describes a periodic motion around the curve.
Such paths are called limit cycles. They are stable if neighboring paths all converge to them
(from both inside the closed curve and outside), unstable otherwise.

It is obvious that these properties — the distribution of equilibrium points and limit cycles, of
a system of differential equations, and the stability or instability of these equilibria and cycles --
are invariant under ordinal transformations of x and y. For consider such a transformation,
x* =¢(x), y* = y(y). Since the orderings of x-coordinates and of y-coordinates are not altered, all
direction paths will remain intact. if they converged on a point or limit cycle in the x-y plane, they
will converge in the x"-y’ plane.

Consider the case where the system defined by equations (11) and (12) has an equilibrium
point which, by transformations of the coordinates and without loss of generality, we can place at
the origin. if we expand f{e) and g(e) in Taylor's series and negiect the higher-order terms, the

system is approximated by
(15)
dx

a-sa:wby

dy

7‘-=cx+dy

(16)

Integrating these equations, we obtain:
x=A ™48 O
(7
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y=C ™D )

where A = (oi&):[(au)z-«aa-bc)]m. The equilibrium will be stabie iff both solutions for A have
negative real parts. But this condition will hold, in tum, iff (a+d) < 0 and (bc—-ad) < 0. >From
Equation (15) (dy/dx) sy = —alb, While from (16) (dy/dx) 40 =—c/d. So stability depends on
which of these two slopes is the greater. if, for example, a and 4 are negative, while b and ¢ are
positive, stability requires that bc < ad, whence —c/d < —a/b. Then the slope of the curve for ;

must be steeper than the slope of the curve for i:.‘.’.

- For, by the chain rule for differentiation,

O o= F D 2
("’ 2 o —Q’{&ga—

Subtractmg these two guantities, we have:
y‘
(d_'_s - _&_ =—"—‘[ - ~)d’
& EF° o a’ 'z .

Since the first two factors on the nght side are always positive, the sign of the difference of
the slopes of the transformed variables is the same as the sign of the difference of the siopes of
the original variables. Hence, stability is preserved under positive monotonic transformations of
the variables. This can be generalized as follows:

Theorem 3: For a system of differential equations:

dx; .

E”.’:‘(“[P‘zv"'!xﬂ)v "lv"" n,
the stabilty of the equilibrium points is invariant over positive monotonic
transformations such as w; = g; (x).

Proof:
The eigenvalues of the transformed equations are the same as those of the original

differential equations.

dw; dw,dx;

T ma s

Linearizing, £, g,/ about the equilibrium point, using a Taylor series expansion,
.
fim Oa 3 S = 2 + -
=l %5
8 =8y +8/(x;~xg) + -

where Xg= (x)g. 2y, * -, X,0) at equilibrium. At equilibrium £; = 0, and with no loss of generality let

us assume x= 0. Therefore, neglecting higher order terms,

13
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dw, . &,
R LA

where, x,-'l,-" (wj) .né 8."" (;:'),.. Substitute for x; in terms of w; by using a linearized relation
about the equilibrium point.
-1
8 - .
Assume wy, = 0, with no loss of generality. Therefore,
aw; &

C K,

law. dx
WhOfO. a" = (z‘: #)' NOtiCO a“ =1.
i

In order to determine the eigenvalues of this equation consider the following determinant,

say A.
fuh a3fiz o By fia

nfas foh By fr,
=0

LRV ATCRY EURERE ey
The expansion of this determinant is given by
|Al= Y (814858 a3y - - G,) |Pgl
where o iscall the'permutations of (1, 2, ..., n), and [Pgl= £ 1 is the permutation matrix of A.

Therefore,
(@10 980y, " ay,) =f1af28S3y " S
where fz=f, - A for i=8. Notice that all the terms with non-repeating indices always form a

Cycie with each index in both positions, i.e. g, , and a, ,. Therefore ;‘.’: is always canceled by ;:.
a

This implies that the characteristic polynomial of the transformed equation is the same as

that of the original equation, therefore that the eigenvalues are exactly the same. .- o

S. Extreme Values

Let y=f{x) be a single-valued function of x, and x*=¢(x) and y* =y(y) be positive
monotonic transformations of x and y, respectively. Let fix) have a locai maximum at x,, SO that
for x in some interval about x,, y(x,) = y> y(x). Now ys> » iff y; > y(x). Hence, y*(xp) > y*(x*),
where xg = ¢(xo) and x* = ¢(x) for any other x in the interval. It follows that maxima of the original
function correspond to maxima of the transformed function.

This result may seem counterintuitive, since whether a stationary value of a differentiable

tunction is a maximum or a minimum depends on the sign of the second derivative, and this sign

14
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is not, in general, invariant under positive monotonic transformations of the variables (concavities
can change to convexities, and vice versa). However, it is easy to show that the sign of the
second derivative is invariant in the neighborhood of a stationary point. The proof, which again

makes use of the chain rule for differentiation, is straightforward, and will be omitted here.

6. Comparative Statics

Much qualitative analysis takes the form of comparative statics. The (stable) equilibrium of
a system is displaced by a change in one of its parameters, and we wish to know how the values
of the system variables are changed when it settles to its new equilibrium. In many cases of
interest, the shapes of the system functions are not known, but only the signs of their derivatives;
and only the sign of the disturbance, and not its magnitude, is given.

To see what kinds of conclusions can be reached under such circumstances, let us
consider a simple example from economics. (See Figure 6-1.) For a certain commodity, the
quantity, ¢, will be supplied by producers if the price is ps = py(q), and the same quantity will be
purchased by consumers if the price is pp = pp(q). More will be supplied if the price is higher
(% > 0), and less will be purchased if the price is higher (% >0). The market will be in

equilibrium when pg(qy) = pp(gg) = po-
Now suppose that a sales tax is imposed on the commodity, so that the et supply price for
any quantity is increased by the amount of the tax. Call the new supply price ps = P(q) > p(q),

and ps@o) = Pp@o) = Po-
Theorem 4: The equilibrium price will be increased, p, > p,. and the equilibrium
quantity will be decreased, g, < q,- Moreover, since the tax is such that p«(q) increases

with an increase in g, the equilibrium increase in price will be smaller than it wouid have
oeen if the quantity exchanged had remained constant:

Ps(a0) >Ps(@0) = Po

Proof: These results do not depend on continuity or ditferentiability of the functions. For
all ¢ > 95, pp(@) < py Since the demand price decreases when the quantity increases. But
ps(q) < p,. since the supply price increases under the same conditions.

For all q, Pdq) > ps(q). the difference being the amount of the tax. Therefore,
Pp(q) < Py < ps(@) < Pglq) for all ¢ > g4, and pp(q) < Pg(q) in this range of ¢q. Hence, if a new
equilibrium exists, we must have 3, < q,. Now for all ¢ < g, (including 3y, p(q) < P(qp). Nence

Ps(ap) > Psldp) =Py Similarly, pp(q) > Pp(qp), SO that pp(Qg) =Py > P * - - -

15
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Equilibrium for Economic Markets

Figure 6-1:
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7. Conclusion

in these pages we have sketched out some of the properties of functions, and especially
continuous differentiable functions, that are invariant under monotonic transformations of the
variables, and have shown how these properties can be used to analyze phenomena where the
variables are only defined ordinally.

The main idea is that, in the case where two variables are positively (negatively)

. monotonically related, their positive monotonic transforms are positively (negatively)
monotonically related. If xis a monotonic function of y and y of z, then x is a monotonic function of
2. If we assign the number zero to a monotonic relation if it is positive, and 1 if it is negative, and
if x,x. %, %, ... x, are a sequence of variables, each of which is a monotonic function of its
successor, than the sign of the relation between x, and x, will be positive or negative as the sum,
modulo 2, of the numbers assigned to the intervening relations is 0 or 1.

Much reasoning about magnitudes, even in the sciences, takes piace without any heip from
mathematical formalisms, but solely in terms of ordinary language. As the illustrations in this
paper suggest, a good deal of this reasoning makes implicit use of the properties of ordinal
variables and monotonic transformations. in both the social science and natural science
literatures, much reasoning is also done from diagrams, without concern for the exact forms of
the functions depicted or the cardinal values of va_riables. This reasoning also makes use only of
the ordinal properties of the magnitudes depicted in the diagrams. We would conjecture that

much if not most everyday, "commonsense” reasoning, when it is concerned with magnitudes, is

actually implicit reasoning about ordinal relations.
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